Deprecated: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in /home/wwwapp/spip/ecrire/inc/utils.php on line 2697
Influxus : explorations, nouveaux objets, croisements des sciences - Influxus
explorations - nouveaux objets - croisements des sciences
Fiche Auteur

Myriam Quatrini

Université de la Méditerranée
Institut de Mathématiques de Luminy
163 avenue de Luminy, Case 907
13288 Marseille cedex 9

Page auteur

quatrini [chez] iml.univ-mrs.fr

Maître de Conférence en Mathématiques au sein du Département de Mathématiques de la Faculté des Sciences de Luminy et chercheur à l'Institut de Mathématiques de Luminy (UMR 6026 du CNRS), Myriam Quatrini est membre de l'équipe Logique de la Programmation et responsable scientifique de l'équipe partenaire 2 du projet Prélude, soutenu par l'A.N.R. Elle est également co-responsable de la mention MASHS de la licence Sciences et Technologie de la faculté de Luminy et membre de l'IREM d'Aix-Marseille
articles de Myriam Quatrini

Une lecture ludique des stratagèmes de Schopenhauer

Introduction

Nous nous intéressons ici à un texte de Schopenhauer intitulé “Dialectica eristica”, traduit en français par l’art d’avoir toujours raison [1], texte souvent qualifié de mineur ou de digression philosophique. Nous proposons alors une digression de la digression. Il ne s’agit pas de développer un propos philosophique ni une étude des jeux logiques à la mode médiévale. En fait, ce texte nous interpelle car il fait écho à l’actualité de la logique contemporaine. Dans ce texte Schopenhauer se propose de définir la dialectique comme l’art de gagner les controverses indépendamment de la recherche de la vérité ; or c’est en “libérant” les preuves formelles de la stricte recherche de la vérité que J.-Y. Girard a proposé une nouvelle théorie logique : la Ludique [Girard-01]. Dans ce texte fondateur, son auteur qualifie cette théorie d’approche purement interactive de la Logique ; nous sommes alors curieux de faire résonner cette approche radicalement nouvelle en logique mathématique dans d’autres champs concernés de près ou de loin par la logique : la dialectique ici, la pragmatique plus généralement.
Parmi les caractéristiques originales et prometteuses de la Ludique on trouve l’abolition d’une dualité qui résistait jusqu’alors en logique : la dualité syntaxe/sémantique. Le dépassement de cette dualité est l’aboutissement d’un changement de point de vue : la Ludique privilégie le point de vue internaliste ; la connaissance d’un objet ne se fait pas via le passage dans un autre monde [2], mais via le résultat de ses interactions avec des objets de même nature. Ainsi que le décrit C. Faggian [Faggian-02b], ce dépassement est réalisé dans le monde des preuves formelles par un double processus : l’abstraction de la syntaxe ; la concrétisation de la sémantique. D’une part on manipule des objets plus généraux que des preuves formelles, en particulier on donne un statut à des preuves qui se terminent par un échec...